IL PROCESSO DI STABILIZZAZIONE DELLE TERRE VIENE ESEGUITO PER:

1) **CORREGGERE LE TERRE**, OVVERO RENDERE UN TERRE NO MENO SENSIBILE AL GELO E COSTIPABILE. (IN QUESTA FASE SI USA MENO STABILIZZANTE, DUNQUE)

2) **STABILIZZARE LE TERRE**, OVVERO CONFERIRE AD UNA TERRA UNA MAGGIORE RESIST MECCANICA CHE NON SIA INFLUENZATA DA VARIAZIONI DI Umidità DEL TERRE NO.

LA STABILIZZAZIONE SI OTTiene MISCELANDO IL TERRENO CON UN AGENTE STABILIZZANTE.

TIPi DI STABILIZZAZIONE:

- **GRANULOMETRICA:** SI CORREGGE LA CURVA GRANULOMETRICA DI UN TERRENO FINE, TRAMITE L'AGGIUNTA DI MATERIALE GROSSO.
 PER FARLO SI USA UNA MACCHINA CHIAMATA "CURVI-MIXER" → ESSA FA PASSARE SUL MATERIALE FINE UNO SCATOLONE CON UNA PRESA ROTANTE CHE INTACCA IL MATERIALE FINE E LO MESCOLA CON IL GROSSO.
 SI OTTiene LO STESSO CON "RULLI"
Questo sistema diminuisce la sensibilità all'acqua.

6. Con aggiunta di leganti (anziché materie grasse).
I leganti inducono reazioni chimiche tali da aumentare l'indurimento del materiale.
Si usano principalmente:
- calce
cemento
generi volanti (che sono elementi pozolanic di scarico).

La stabilizzazione consente di:
1) utilizzare terreno proveniente da scavi (e quindi molto umido -> W > Wott) per realizzare rilevati.
Solitamente, infatti, quando il terreno è troppo umido, occorre farlo asciugare al sole.
Ma se non è possibile, si stabilizza il terreno.

(Nel caso della correzione del terreno, la terra è meno sensibile al gelo, ma non varia la resist.
Nella stabilità aumenta anche la resist.)

2) Migliorare gli effetti del costipamento.
Vediamo questi 2 punti:

1) Impiego di terre molto umide provenienti da scavati per realizzare ailevai.

Se il materiale ha poco fuso, si può asciugare all'aria il terreno.
Se ha molto fuso, ci sono 2 possibilità:

- lo butto via
- si correge con calce viva:
 $$\text{CaO} + \text{H}_2\text{O} = \text{Ca(OH)}_2 \quad \text{calce idraulica}.$$
 La reazione produce calore. Questo calore fa evaporare l'acqua.

In che misura?

Per ogni 1% di calce viva, ho:

1) Riduz diretta di 0.8% w perché la reazione richiede acqua ed è esotermica.
 Inoltre, la nuova miscela ottenuta (terre no umido + calce secca) ha un wet unit di quello della terra umida.

2) Riduz indiretta di 0.2% - 0.7% w perché la nuova miscela è più secca, più facile da mestolare, e quindi è più facile l'aerazione.

2) Impossibile di costipare il primo strato di ailev perché il P.P. è troppo umido.

È possibile usare i geotessili.
Otturare applicare:
Correz granulom
Stabil con calce e cemento

Imposs di stesa e costipam dello strato di fondaz delia situ perche' il sottofondo e' troppo umido.

Occorre aumentare la rigidezza del sottofondo.
Si corregge con calce viva o calce-cemento.

Come scelgo il tipo di stabilizz?

Il tipo di stabilizzazione si sceglie sulla base del terreno da stabilizzare, ovvero:

1) Ip
2) Passante 0.075 mm \geq 25%

La norma riporta una tabella.

- Usabile
- Dubbio
- Non usabile

Ese il cemento è usato per tutti i terreni a grana grossa, e a grana fine con scarsa plasticità.
Esempio:

Influenza della quantità di stabilizzante sulla resistenza compressiva dei diversi terreni.

(a 7 gg, t = 25°C, w = cost)

MPR

SW

CL

% cemento

Stabilità volumetrica di un terreno stabilizzato con cemento.

% cemento

3 giorni

7 giorni
Perdita di resistenza dovuta al ritardo di compostazione per una roccia fina frantumata stabilizzata con 3% di una miscela di cemento e scorie d'alto forno.

Se ritardo il costipam, nel materiale sciolto si formano strutture cristalline per la presenza del cemento. I rulli distruggono tutto)}